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Abstract: In a typical optic fiber Bragg grating (FBG) strain measurement, unless in an 
ideal static laboratory environment, the presence of vibration or often disturbance always 
exists, which often creates spurious multiple peaks in the reflected spectrum, resulting in a 
non-unique determination of strain value. In this report we attempt to investigate the origin 
of this phenomenon by physical arguments and simple numerical simulation. We postulate 
that the fiber gratings execute small amplitude transverse vibrations changing the optical 
path in which the reflected light traverses slightly and non-uniformly. Ultimately, this 
causes the multi-peak reflected spectrum. 
 
1. Introduction 
In recent years, the use of optical fiber Bragg grating sensors has gained popularity for 
sensing strain, temperature, and pressure etc., especially for large structures, such as 
aircraft wings and bodies in real time. FBG sensors offer several inherent advantages over 
conventional electrical resistance foil strain gauges. They are immune to electromagnetic 
interference, and are light weight, portable, and self-referencing and up to several hundred 
sensors can be incorporated along a single fiber. Despite these advantages, the development 
of Bragg grating sensors as a mainstream strain sensing technique, especially in a real 
dynamic environment, has been hampered by a number of factors, such as lack of 
conclusive information about sensor reliability and repeatability. Sometimes the reflected 
signal does not give a unique value; the reflected peak tends to spilt and the strain value has 
to be guessed. In this report we would like to investigate this issue using physical principles 
and numerical simulation, and hopefully we can shed some light on this topic. 
 
2. Contributing factors of spectrum signal noise 
Consider a scenario of Bragg grating fiber sensor imbedded in the skin of a morphing wing 
of an airplane during flight, where the measured strain values are sought to control the 
shape of the wing. There are many factors that could affect the measured strain value such 
as engine noise, wind and air stream noise, engine vibration (higher frequency), flutter 
(much lower frequency) noise and airplane natural vibration. Among all the possible input 
noises, we believe the most dominant ones are the engine vibration and air stream induced 
vibrations which generate a much higher frequency and amplitude. These vibrations, in our 
belief, ultimately ruin the precision of measured strain values. 
 
3. Treating the fiber as part of an elastic continuum mechanically 
Since the optical Bragg grating fiber is embedded in the skin of a structure, and due to its 
small mass, we assign all its mechanical properties, such as stiffness and modulus of the 
fiber to those of the host, for example the aluminum structure as far as mechanical response 
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is concerned. Fortunately the material properties are very close to the optical fiber’s1. The 
optical fiber retains only its optical property. In an elastic medium a small applied shear 
force produces a true static configuration that returns to the original un-deformed state 
when the force is removed. The elastic equation of motion is often written in vector form2. 
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Where ρ is the density, mass/volume; μ is known as the shear modulus; K is the bulk 
modulus, both have the dimension of force per unit area. f is an external driving force. We 
separate the general displacement field u into its longitudinal and transverse components, 
 
u=ul + ut         (2) 
 
Where  0 ,    0l t∇× = ∇ =u u       (3) 
 
We further can separate longitudinal and transverse components into two independent 
equations 
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In the absence of external forces, either component satisfies a simple homogeneous wave 
equation 
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Note that from the above equations, the speed, vl > vt , implying that an elastic medium 
offers greater resistance to a longitudinal disturbance than to a transverse one. By the same 
argument, one of the transverse components parallel to the surface can also be neglected. 
Therefore, we only have to deal with the transverse component denoted as u⊥  which is 
perpendicular to the structure surface. Furthermore, we assume the fiber grating is parallel 
to the wave propagation direction which lies along the x axis. 
 We rewrite Eq. (5) and replace vt  by v 
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The right hand side provides a traveling wave solution of much lower frequency and is 
ignored here. 
 
  For simplicity, let us assume the driving force is located at x=0 with simple harmonics 
form  

i t
t 0f F e ω−=          (8) 

 
 
Then, following 3, we obtain the particular solution of Eq. (7) as 
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From Eq. (9) we realize that for high frequency vibration, we can achieve a  
Ω that is comparable to our fiber grating length. 
 
4. A stretched fiber caused by the vibration 
 
As shown in Figs. 1a and 1b, we depict a fiber lying along the x-axis when there is no 
vibration, but as an external disturbance such as vibration strikes, the host medium along 
with the fiber reacts as an elastic continuum in a wave motion. We have shown here is that 
for an ideal case without losing generality the total grating length is one quarter (1/4) of the 
vibration wavelength Ω. We assume that the fiber is executing a harmonic motion 
represented thus 
 

( ) sin( )y x A kx φ= +         (10) 
Where the harmonic time dependence is omitted; A is the amplitude and φ  is a time 
independent phase angle.  In other words, Eq. (10) represents the wave motion at instant 
time t, as if we take a snap shot at time t as the wave is passing by. Or we can argue that a 



 4

standing wave is created and that the time and space variables are separated and time 
dependence is absorbed by the amplitude4. 
 
 
 
 
 
 

 
Fig. 1a the total Grating length happens to be approximately ¼ of vibration length with 
phase angle of 00 

 
 

 
 Fig. 1b the total Grating length is 1/4 of vibration wavelength with phase angle 450  
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In Figs. 1a & 1b, the total sensor grating length is equal to one quarter of the vibrating 
wavelength, but with different phase angles. Of course, in general, the total grating length 
can be any fraction of the vibration wavelength depending on time, wavelength, speed etc.  
 
We consider a fiber grating length of  L (from x=0 to x=L), which consists of alternating 
sectional length of  l and r, each having an index of refraction of n and n’ (n’= n +Δn). To 
reach maximum reflectivity (tuned), the following conditions have to be satisfied5: 

0 0/ 4 '  ,   = / 4r n l nλ λ=        (11) 
And the grating period d 
 

0 01 1( )
4 ' 2

2 ' 
'

eff

eff

d r l
n n n
n nwhere n

n n

λ λ
= + = + =

=
+

       (12) 

And λ0 is the “tuned” optical wavelength. 
 
In the static case the length r and l are constants, but in a stretched case under vibration, 
both r and l become a function of x stretched to r’ and l’ and are measured along the arc. If 
a simple sine wave is adopted and the sensor length is approximately equal to ¼ vibration 
period Ω, then the vertical displacement can be expressed as  
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Likewise, the value l changes to l’ and φ  is the time independent phase angle. 
This assumption forms the theoretical base of our model. The computation was carried out 
using standard transfer matrix method which we have reported earlier.6,7 

 
5. Simulation Results 
 
There are two parameters that characterize the vibration; frequency (wavelength) and 
amplitude. In order to show qualitatively the reflective spectrum with respect to amplitude, 
we let the sensor length approximately equal one quarter of the vibration period Ω, for 
vibration amplitude A=1.e+4, 1.e+5 , 5.e+5 and 1.e+6 nm and for initial phase angle φ =0 
and π/4 respectively. It is obvious that for different phase angles, the sensor length occupies 
different segments of the wave period resulting in a different distribution of grating 
distance change. Intuitively, we knew that a sine curve of small argument at phase angle 
φ =0, behaves linearly. In other words, the grating planes on the left (trailing edge)get 
stretched linearly. While for phase angle φ = π/4, the central part of the grating planes get 
stretched less but more uniformly (keep in mind that the change of grating distance 
depends upon the slope). The different distributions of grating plane change results in a 
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totally different reflective spectra, shown in figs. 2c, 2d, 2g and 2h. However when the 
amplitude is small, the reflective spectrum hardly show any abnormality, but instead 
exhibits a perfect, distinct, single peak spectrum governed by the Bragg law. In all the 
simulation results, we have assumed the sensor length L = 3mm and the speed u⊥ = 3000 
m/s which translates to the forced vibration frequency ω/2π, of about 250 K cps, which is 
in the ultrasound frequency range. In our analysis, we have not included the damping and 
photo-elastic effects6. 
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Fig. 2a Reflectivity versus wavelength for vibration amplitude =1.e+4 nm with phase =00 
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Fig. 2b Reflectivity versus wavelength for vibration amplitude =1.e+5 nm with phase =00 
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Fig. 2c Reflectivity versus wavelength for vibration amplitude =5.e+5 nm with phase =00 
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Fig. 2d Reflectivity versus wavelength for vibration amplitude =1.e+6 nm with phase =00 
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. 2e Reflectivity versus wavelength for vibration amplitude =1.e+4 nm with phase =450 
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2f Reflectivity versus wavelength for vibration amplitude =1.e+5 nm with phase =450 
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2g Reflectivity versus wavelength for vibration amplitude =5.e+5 nm with phase =450 
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2h Reflectivity versus wavelength for vibration amplitude =1.e+6 nm with phase =450 

 

6. Conclusion and Discussion  
 
We have gained some understanding with respect to dynamic strain measurement that, 
indeed, vibration or any disturbance may cause non-unique strain determination. 
We argued physically that the dominant mode of the vibration that interferes and causes 
our erroneous strain measurement is the transverse (out of surface) component of the 
external vibration source. For a given frequency (in our case at 250K cps), depending upon 
the amplitude, if the amplitude is small, e.g., A=1.e+4 nm which is 10-3 cm, we can 
uniquely determine the strain values. However, when the amplitude becomes larger, say 
>5.10-2 cm, the reflective spectrum will show split peaks. Intuitively, a local disturbance of 
amplitude of 5.10 -2 cm is highly possible. The reflective spectrum pattern can qualitatively 
and uniquely be correlated to the distribution of grating plane changes. As far as the 
frequency is concerned, lower frequency means longer wavelength Ω. For the same 
amplitude, the slope of the sine curve is less steep; therefore the grating plane distance 
changes less, resulting in weaker split peaks and vice versa. For all the analyses and 
calculations reported in the literature, a time independent approach is always assumed, that 
is at any time the measurement should yield the same results. Obviously this is not the case 
here. At time instant t and the reflective spectrum obtained which is time dependent unless 
the amplitude is small, in which case the reflective spectra are almost identical. We also 
assume there is no time delay in the laboratory equipment and the speed of light is infinite. 
In reality, of course, this is not quite true. When the frequency becomes higher, the time 
constant (period) gets smaller to a point that falls into the range of delay time of the 
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measuring equipment. In such a scenario, the situation is much tougher to handle. Another 
interesting observation seen by examining Fig. 2a to 2h, suggests that this analysis may 
provide a highly sensitive sensor for shape sensing, i.e.,  a lateral movement on the order of 
10-2 cm can be detected. What was shown here is the unstrained case, but for the strained 
case we need to superimpose these two effects. However, the present analysis still stands. 
We conclude by stating that the fiber optic Bragg sensor works on the principle of 
constructive reflection of light on a fixed distance of the grating plane. Any mechanical 
disturbance that changes the distance between the reflecting planes non-uniformly that will 
result in some degree of destructive interference, which is manifested in the spectrum. 
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